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1 Introduction

We consider the problem faced by a principal who seeks to the structure incentives faced by a set
of agents in forming a network of connections among themselves in such a way that each agent,
in light of his private information, forms connections that are the best interest of the principal.
Thus, the principal seeks to in uence - if not control - not only who is interacting (i.e., which pairs
of agent’s form connections) but also how they are interacting. In many networking situations,
however, the principal, in addition to not being able to observe who is interacting and how, does
not have complete information concerning the agent’s “type” (i.e., a parameter summarizing the
agent’s basic characteristics). Thus, there is an adverse selection problem.

To address the issues raised above, we construct a principal-agent game of network formation
(over layered networks) with asymmetric information and we consider the following two questions:
(1) is it possible for the principal to design a mechanism that links the reports of agents’ about their
private information and the set of connections allowed and recommended by the principal via the
mechanism in such a way that players truthfully reveal their private information to the principal and
follow the recommendations speci ed by the mechanism. (2) An even more fundamental question
we address is whether or not it is possible for the principal to achieve the same outcome (as
that achieved via a mechanism and centralized reporting) by instead choosing a pro le of sets
of allowable ways to connect (here modeled as node-pair speci c sets - or catalogs - of arc types)
and then delegating connection choices to each pair of players. We call this approach to network
formation with incomplete information delegated networking and we show, under relatively mild
conditions on our game-theoretic model of network formation, that strategic network formation
with incomplete information, implemented via a mechanism and centralized reporting, is equivalent
to implementation via delegated networking with monitoring. Thus, we show that the delegation
principle of contracting theory holds for games of network formation with incomplete information.

2 Networks and Incomplete Information

2.1 Primitives

Assume the following:

(1) is a nite set of agents, consisting of agents, equipped with the discrete metric , having
typical elements and .

(2) 2 := × is the set of agent pairs, consisting of 2 pairs, each representing a player,
equipped with the discrete metric × := + , having typical elements (including
the diagonal pairs 2).

(3) is a compact metric space of clubs equipped with metric having typical element ,
containing a special “no interaction” club 0 (more on this below).

(4) ( B( )) is a space consisting of mutually observable states, , where is a complete,
separable metric (Polish) space with metric and Borel - eld B( ).

(5) ( B( )) is a space consisting of th agent types, , where is a complete, separable
metric (Polish) space with metric and Borel - eld B( ).

(6) := × is the space of player ’s possible types, := ( ) , equipped with the
Borel product - eld, B( ) := B( )× B( ).
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(7) = is the space of player type pro les ( -tuples), , equipped with the Borel product
- eld, B( ) = B( ).

(8) is the feasible set of arc types, , where is a weak star compact, metrizable, convex subset
of the separable norm dual, ( k·k ), of a separable Banach space, ( k·k), equipped with
compatible metric .

(9) (· ) is club 0 feasible arc correspondence, a set-valued mapping from the set of all players,
, taking values in the collection, 2 , of -closed subsets of such that for each player,
,

( )

Alternatively, the 2 -valued correspondence, ( ·) is player 0 feasible arc correspondence
across clubs.

We will refer to our list of primitives together with our assumptions as [A-1]( ), = 1 2 9.

2.2 Agent Pairs as Players

Because the basic strategic ingredients of our game of network formation are bilateral connections,
it is useful to view each agent pair, , as a player or a node in the connections game with a player’s
club choice representing the resolution of the “whether or not to connect” and “how to connect”
part of the problem. From the perspective of the principal, because the asymmetric information
relevant to the connections issue is with regard to the types of the two agents contemplating the
connection, by the very nature of the principal’s problem of incentivizing truthful revelation and
connections, we are led to think of the agent pair, , as the player and to think of their joint
information, , as the information of strategic interest. Moreover, by taking agent pairs as players
and by viewing a player’s type as the joint type of the underlying agent pair, we are able to bring
to bear on the contentious problem of bilateral incentive compatibility methods from contracting
and mechanism design.

2.3 Pre-Connections, Connections, and Networks

Connections are the fundamental building blocks of networks. While connections can be modeled
in many di erent ways, all connections are made up of two basic ingredients: nodes and arcs. In
our model the nodes are given by players, 2 and clubs, . Thus, in our model of club
networks, the set of nodes is given by

( × )| {z }
players

|{z}
clubs

.

Our approach to the network formation problem will be to model the totality of the connections
between agents as a directed club network where the connection between an agent pair is represented
by that agent pair’s (i.e., that player’s) connection to a club. In our club network - a bipartite
network - each club \{ 0} is a “venue” where players who are members of club can engage
in particular types of interactions, , where is an interaction initiated or proposed by
agent and directed toward agent . More compactly, we say that player joins club and takes
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feasible action . A typical connection in such a club network looks like the following:

i1ij i2c
a

Figure 1: Player joins club and takes action ( )

We will refer to the player and club pairing, 2× as a pre-connection. If player joins
the special no-interaction-club, 0, then the only action that player can take is 0 ( 0) :=
{ 0}. We will assume that if player joins a club 6= 0 and takes action ( ), then agents
and composing player share their private in formation (i.e., knows 0 type and knows
0 type ) and this is common knowledge. Whereas if player joins the no interaction club, 0,
and takes action 0 - the only action can take - then agents and do not share their private
information - and this too is common knowledge. Finally, if player is in club and player 0 is
in club 0, does not know 0 ’s type nor does 0 know ’s type - and this remains true even if
and 0 are the same club.

2.4 Pre-connections and Pre-Networks

Our objective is to build a game theoretic model of endogenous network formation that makes clear
how the interplay between strategic behavior and network structure - under asymmetric information
- determine the payo to the principal. Because the fundamental building blocks of such a network
are bilateral interactions between agents, in our principal-agent game of network formation - as
mentioned above - we will take as the set of players the set of all possible ordered pairs of agents,
:= ( ) 2. Thus, 2 is the set of players.
A group of players is given by a subset × consisting of a subset of ordered pairs of

agents. Given a set of players, , we can then form a group club membership pre-network,

×
consisting of a nonempty 2× -closed subset, , of pre-connections, (where 2× :=

+ × ). Thus, the set of all pre-networks involving members of group, , is given by
( × ), the hyperspace of all nonempty, 2× -closed subsets of × . We will call each such

pre-network, ( × ) a -pre-network.
The set of all pre-connections is given by

2 × .

Thus, the hyperspace of all pre-networks, 2 × , is given by,

( 2 × )

the hyperspace of all nonempty, 2× -closed subsets of 2 × .
Here, if player joins club , then agent can engage in the interactions contained in ( )

with agent (e.g., see Page and Wooders (2009, 2010)). Because there are di erent clubs, in a
club network representation of a network, the network is layered, with each layer being speci ed by
a club.1

1An important mathematical point: the sets of types of interactions that players can engage in the di erent clubs
- i.e., , are all subsets of the same space of arc types, namely, . In He and Page (2014), the case in which the
arc type spaces, , di er across clubs (for example with respect to metric) is treated - in a model otherwise similar
to the model given here. While this added degree of model exibility seems minor, technically, it is not minor - it
requires much more mathematical machinery to establish the delegated networking principle for the case in which the
arc type spaces di er across clubs.
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From assumptions [A-1], the feasible arc correspondence from pre-connections into arc sets is
given by

( ).

From the perspective of player , ( ), is player ’s feasible arc correspondence across
clubs, while from the perspective of club , ( ), is club ’s feasible arc correspondence
across players.

2.5 Club Networks and Layered Networks

In our club network model, we will assume that each player, 2 can join multiple clubs
, and in each club player takes a particular action from a feasible set of actions, ( ),

relevant to that club. This set of relevant actions for each player-club pair is given by the feasible
arc correspondence, ( ).

We have the following formal de nition of a club network.

De nitions 1: (Club Networks)
Given arc set , node set, 2 and feasible arc correspondence, ( ) 2 , a club
network is a nonempty, closed subset, , of × ¡ 2 × ¢

such that (i) | ( )| 1 and
| ( )| = 1 for some , and (ii) if for , | ( )| = 1 then ( ( )) if and only if

( ). We will denote by G the collection of all feasible club networks. Thus,

G :=
©

( × ( 2 × )) : satisfying ( ) and ( )
ª

Thus, in a club network a typical connection is given by

( ( )) × (( × )× )

where connection, ( ( )), indicates that player is in club and that in this club player
takes feasible action ( ).

We will call the connection, ( ( )), a -connection. The set of all -connections is given by

:= × ( 2 × { })
We will equip with the sum metric,

:= + + .

2.5.1 The -Network Decomposition

A -layer is a -closed subset of the set of connections, , such that ( )) if and
only if ( ). We will often be interested in the arc section of a -layer, , at various
pre-connections. For example, at pre-connection ( ), the arc section of at ( ) is given by

( ) := { ( ) : ( ( )) } .
The arc section, ( ), of -layer at ( ), lists the feasible set of arcs used in connecting
agent pair (player) to club in layer of club network . The cardinality of the arc section,
( ), | ( )|, gives the number of arcs used in connecting agent pair to club in layer .

The domain of -layer, × ( 2 × { }), is given by
D( ) := { 2 : ( ) 6= }
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Note that D( ) is the subset of players who belong to club . It is possible for a -layer has no
members (i.e., in club network , club has no members).

The domain of a club network is given by

D( ) := { 2 × : ( ) 6= }

While the domain of a -layer is a set of players (possibly empty), the domain of a club network is
a set of pre-connections - or a pre-network.

Note that a club network, , can be uniquely decomposed into the union of its -layers,

:=

Equipped with the Hausdor metric , the collection of all possible -closed subsets of -
connections, 2 , is a compact metric space. Thus, (2 ) the compact metric space contains
all possible -layers (including the empty layer - and when the layer is nonempty, it is called a -club
network). We will de ne the distance between two club networks, 1 := 1 and 2 := 2

as the sum of the distances between the -layers which make up 1 and 2. Thus, the distance
between club networks 1 and 2 is given by

( 1 2) :=
P

( 1 2),

where ( 1 2) is the Hausdor distance in 2 .
For each player , the graph of the feasible arc correspondence,

( )

is given by
( ·) := {( ) × : ( )} .

If ( ) ( ·), then action can be taken in club by player . Given club network , the
arc section of at ( ), given by

( ) := { ( ) : ( ( )) } ,

is such that for all ( ),
( ) ( ).

Moreover,
( ·) ( ·).

2.5.2 The -Network Decomposition

Besides the -layer representation, another useful representation of a club network is the -
network representation. We can think of a club network as being composed of each individual
player’s club network. For example, player 0 network, × ({ }× ). Because each player
can join the no interaction club, 0, (i.e., if agents and choose not to interact), then the
-network is given by

= {(1 ( 0))}
Thus, for each player, , is a nonempty, closed subset of × ({ } × ). Letting

:= × ({ } × ),
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each -network, , is contained in ( ), the collection of all nonempty, closed subsets of
(as opposed to being contained in 2 , the collection of all closed subsets of - including the
empty set). The representation of club network via its constituent -networks, is given by

= .

We will sometimes write as an 2-tuple of -networks as follows,

= ( 11 12 1 1 2 )
rather than as a union of -networks

= .

Let ( × ) denote the collection of all nonempty closed subsets of { } × where { } ×
is the set of all pre-connections for player in the collection of all preconnections, 2 × .

Given any -network, × ({ } × ), the domain of is given by

D( ) := { : ( ) 6= } .

Because the set of clubs, , includes the no-interaction club, 0, each -network has a nonempty
domain. Thus, D( ) 6= for all players . In fact, we have for all -networks,

1 |D( )| + 1.

The collection of all feasible -networks that can be formed by player is given by,

G := { ( ) : | ( )| 1 for all } .

We note that ( ) 2 ( ) the collection of all -closed subsets of ( ) (including the empty
set).

2.6 Information as States and the Network Representation of Information

We will think of the state space as being given by := × , with typical element,

( ) := ( 1 2 )

If at time point = 0 1 2 , the prevailing state is ( ) := ( 1 2 ), we will assume
that each agent knows ( ) - and that this is common knowledge. Thus, agent knows his
piece of the -state at time point , while all agents know the -state at time point . Moreover, if
two agents, and , are connected at time point , then the agent pair (i.e., the player), , knows,
( ) - but the pair, , does not share the information about the types of those agents to
whom and are directly connected at time point . Thus, if and 0 are connected and and 0

are connected, then the pair, , does not know 0 or 0 .
Each player (agent pair), , has a type given by

:= ( ) × :=

While each agent pair knows their types, the principal only knows the agent type pro le,

:= ( 1 2 ) ,

up to a probability measure, (·).
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We will represent the state information possessed by each agent as a diagonal loop network
I := T S, where

T = × ({ } × { })
is the collection of all -connections, with typical element T . A -network is an -tuple

= ( 1 ) T := T

The collection of all -connections, with typical element S,

S := × ({ } × { }).
An -network is an -tuple

= ( 1 ) S,

such that = for all .
It is clear that without confusion, we can represent each state information network

I := T S

as = ( ). Equip T with the sum metric, T :=
X

and equip S with the metric, S :=

3 Mechanism Games vs Catalog Games

3.1 Games Over Mechanisms

Let = ( ) = ( ) denote the part of the state, = ( 1 2 ) knows to player
(i.e., to agent pair ). We begin with a formal de nition.

De nition 2 (Direct -Network Formation Mechanism)
A direct (network formation) mechanism is a (B( ) B(G ))-measurable mapping

: G

from player 0 state space, , into the collection of all -networks, G , that player can
form.

For any ’s state , there exists some G , such that ( ) = . Note that
for ( ) D( ( )), the set,

( )( ) := { ( ) : ( ( )) } ,

is empty.

3.1.1 Incentive Compatible Mechanisms with Voluntary Nonparticipation

Let := ( ) G be a feasible club network and let

( ) := ( )

be the payo to player of type if other player types are given by and if the pro le of player
club networks is given by := ( ) G.
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We will assume that all payo functions are Caratheodory - meaning that for each player , the
payo function

( ) ( )

is measurable in states on and continuous in networks on G. We will also assume that for any
pro le of -network formation mechanisms, ( ) := ( ( )) × , player 0 payo
function,

( ( )),

is B( )-measurable.
We will assume the following concerning each player’s payo function, (· ·) (see Balder, 1997,

and Bloch and Jackson, 2007)

[A-2] (Payo functions are additively coupled)
We will assume that for each ( ) ×G,

( ) = ( ) +
P

0 0 6= ¯ ( 0 0 0 0)

for some functions ¯, where is Caratheodory.

We have the following formal de nition of an incentive compatible mechanism (or an IC mech-
anism).

De nition 3 (Incentive Compatible Network Formation Mechanism with Voluntary
Nonparticipation)

We say that a network formation mechanism, ( ) is incentive compatible if for each
player, , 0 part of the mechanism, ( ), is such that for all and 0

max { ( ( ) ( )) ( ( ))}
max

n
( ( 0 ) ( )) ( ( ))

o (1)

where ( ( )) := ( (1 ( 0)) ( )) is player 0 aggregate
payo when player chooses not to participate in the mechanism.

Denote byM( G) the set of all (B( ) B(G))-measurable functions and denote by IC the subset
of M( G) consisting of functions that satisfy the IC inequalities (1).

Note that under the assumption that player payo functions are additively coupled, in order for
a mechanism,

(·) M( G)

to be incentive compatible, it su ces that each player’s part of the mechanism, (·) M( G )
be incentive compatible while allowing voluntary nonparticipation. In particular, under additively
coupled payo s, a mechanism, (·) := ( (·) (·)) is incentive compatible (allowing voluntary
nonparticipation) provided that for each player, , and for each and 0

max { ( ( )) ( )} max
©

( ( 0 )) ( )
ª

(2)

where ( ) := ( (1 ( 0))) is player 0 aggregate payo - without the additive spillovers
from other players’ interactions - when player chooses not to participate in the mechanism and
there is no information sharing between agents and .
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Let
( ( )) := max { ( ( )) ( )} ,

We will assume that player chooses nonparticipation if and only there is a positive gain from
doing so. Therefore, if (·) satis es the IC constraints with voluntary nonparticipation (2) and
if for some ,

( ( )) = ( )

then
( ) ( ( )) = ( ) ( ( 0 )) for all 0

Therefore, no amount of misreporting will make participation attractive.
If player reports his private information to be 0 then the mechanism recommends to player
that form the -club network ( 0 ). Thus, if an -mechanism satis es expression (1),

then player will participate in the mechanism and will have nothing to gain by misreporting
his private information to the mechanism. The mechanism is incentive compatible with voluntary
nonparticipation.

Assuming for the moment that all players report their information truthfully and choose the
pro le of -networks recommended by the mechanism, then the pro le of -mechanisms will give
rise to a feasible club network,

( ) := ( ( ) ( )) G

with typical connection ( ( ) ( )) where pre-connection, ( ), is in the set of pre-connections,
D( ( )), speci ed by the mechanism and where for all ,

( ) ( ) for all ( ) D( ( )).

We close this subsection on IC network formation mechanisms by noting that if for some type
of player , with truthfully reported type, , D( ( )) = {( 0)} so that ( )( 0) =
{ ( )} = {1}, then player of type := ( ) will not interact and player will have a
payo of

( {(1 ( 0))| {z }
( )

} ( ))

=
( (1 ( 0))) +

P
¯ ( ( ))

Note that even though player engages in no interactions, player 0 reservation payo level,

( {(1 ( 0))} ( ))

is still a function of the interactions of the other players via the other -networks, ( ).

3.1.2 The Principal’s Problem over IC Mechanisms

Assume that the principal has payo given by

( ) ( ) := ( ( )),

over pro les of player types and pro les of player club networks. Under an incentive compatible
network formation mechanism,

( ) ( ( ) ( ))

10



the principal’s payo becomes
( ( )),

where

( ) :=

11( 11) · · · 1 ( 1 ) · · · 1 ( 1 )
...

...
...

1( 1) · · · ( ) · · · ( )
...

...
...

1( 1) · · · ( ) · · · ( ) ×
In this section we will analyze the network formation problem under incomplete information

as a principal-agent network formation game with adverse selection, assuming that the principal is
allowed to design a pro le of network formation mechanisms,

( ( )) ×

so as to induce players to reveal their types and to follow the connection recommendations of the
mechanism.

Given the principal’s probability beliefs, , de ned on the measurable state space, ( B( )),
the mechanism design problem, P1, faced by the principal is given by

max (·) M( G)
R

( ( ( ))) ( )

such that for all , and for all and 0

( ( )) ( ( 0 ))).

(3)

Problem P1 can be restated as the following problem P2.

max
(·) IC

Z
( ( )) ( ) (4)

3.2 Games over Catalogs

Our objective now is to characterize all incentive compatible network formation mechanisms via cat-
alogs of -club networks. We call this characterization result the Delegated Networking Principle.2

The importance of the delegated networking principle in proving existence of an optimal network
formation mechanism is that it allows us to convert the principal-agent network formation game
over network-valued mechanisms with incentive compatibility constraints into an equivalent uncon-
strained principal-agent game over catalogs of -networks. With this conversion, we are able to
avoid the di cult problem of searching for a topology for the function space of network-valued mech-
anisms making the subset of incentive compatible mechanisms compact, players’ payo functions
continuous, and the principal’s payo function upper semicontinuous. Instead, our reformulation of
the network formation game as a principal-agent game over catalogs of networks allows us to utilize
the topology already present in the space of -networks to establish existence.

2The delegation principle for principal-agent games in contracting situations was proved in Page (1992, 1997).
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3.2.1 Catalogs of -Network

Preliminaries To begin, suppose that the principal, rather than o ering each player, , a mech-
anism, (·), and requiring a report from player concerning his type, , to determine the
-network recommendation, instead o ers each player a catalog, G , of -networks and then

observes the player 0 choice from the -network catalog.
An -catalog, G , is a closed set of -networks . We must make precise what we mean by

closed - as well as make precise what we mean by the distance between two catalogs. To begin,
suppose G1 and G2 are two -network catalogs. Just as is the case with a club network , any
-network, , can be written as the union of its -layers. Thus, we have

=

where for each , is a subset of ( )× ({ }× { }). Thus, the -layer in any -network, ,
is of the form

( )× ({ } × { }).
Because a player may not be a member of all clubs in network , for some 0, player 0 network,

0 , may be empty. Hence,
2 ( )×({ }×{ }).

Given two -networks, 1 and 2 , the distance between them is given by

( 1 2 ) :=
X

( 1 2 ), (5)

and for each ,

( 1 2 ) =

+ if 1 = 2 6=
( 1 2 ) if 1 6= 2 6=
0 if 1 = 2 =

(6)

A -catalog G is a -closed, subset of -networks, where recall, the collection of all feasible
-networks is given by,

G := { ( ) : | ( )| 1 for all and | ( )| = 1 for some } .

The Hyperspace of Catalogs of -Networks Recall that for each player , (G ) denotes
the collection of nonempty -closed sets, G , where each set G G consists of a collection
of -networks, G , where each -network is the union, , of -closed subsets of
( )× ({ }×{ }). The catalog, G , is closed in the sense that if { } G is a sequence such
that

then G . We want to equip the hyperspace of catalogs, ( (G )), with typical element
G , with the Hausdor metric, , induced by the metric on G . Thus, in the hyperspace of
catalogs ( (G )) if the catalog sequence {G } is such that,

G G then G ( (G )).
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The Hausdor metric is de ned as follows: for G1 and G2 in ( (G ))

(G1 G2 ) := max
n

(G1 G2 ) (G2 G1 )
o
,

where the excess of G1 over G2 is given by

(G1 G2 ) := sup 1 G1 ( 1 G2 )
and

( 1 G2 ) := inf 2 G2 ( 1 2 ).

Convergence in ( (G )) can be described as follows. Let {G } be a sequence in ( (G )).
The limit inferior, {G }, of the sequence {G } is de ned as follows: {G } if and

only if there is a sequence { } in G such that G for all and .

The limit superior, {G }, of the sequence {G } is de ned as follows: {G } if and
only if there is a subsequence, { } in G such that G for all and .

The -catalog, G , is said to be the limit of the sequence, {G }, if

{G } = G = {G }

Moreover, (G G ) 0 if and only if {G } = G = {G } (see Aliprantis and Border,
2006).

3.2.2 The Player’s Catalog Problem

If the principle o ers catalog G to agents (i.e., player ), then player 0 problem is to choose
an optimal -network, , from the catalog G . Thus, player 0 problem is given by

( G ) := max
G

( )

Under [A-1] and [A-2] it follows from Page (1992) that because G is -compact, ( ·) is -
continuous on G (and measurable in ) for each , there exists an optimal -network, ( ).
In fact, there exists an optimal measurable selection, ( ) G , such that

( ( )) = ( G ) for all .

By Proposition 4.1 in Page (1992), for each , the player’s catalog payo function, ( ·) is
-continuous on ( (G )) (i.e., is -continuous in catalogs), and for each catalog, G , (· G )

is B( )-measurable. Moreover, by Proposition 4.2 in Page (1992), for each , the player’s
best response correspondence

( G ) ( G )

is B( )× B(G )-measurable and for each ,

G ( G )

is -upper semicontinuous on ( (G ))
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3.2.3 The Principal’s Catalog Problem

The principal’s problem has two parts. First, for any given choice of a catalog pro le

G := (G G )
Y

(G ),

together with players’ best response mappings,

( G) :=
Y

( G )

the principal will rst make -network recommendations to the players. The principal’s recommen-
dation list is constructed by solving type by type for a given catalog pro le, G, the problem,

( G) := max
( ) ( G)

( ).

By Proposition 4.3 in Page (1992), (· ·) is B( )× B(G )-measurable and for each ,

G ( G)

is × -upper semicontinuous on
Y

(G ).

With these technical preliminaries out of the way, the principal’s problem of nding an optimal
catalog pro le, G , reduces to the following unconstrained problem:

max

Z
( G) ( ) : G

Y
(G ) . (7)

By Proposition 4.4 in Page (1992), there exists an optimal catalog pro le, G , such thatZ
( G ) ( )

Z
( G) ( )

for all G
Y

(G ).

It is easy to see that if G
Y

(G ) solves the catalog problem, then the incentive com-

patible mechanism,
( ) := ( ( ) ( )) ( G )

solves the principal’s problem over incentive compatible mechanisms given by

max
(·) IC

Z
( ( )) ( ). (8)

By taking the -closure of the ranges of the -mechanisms, ( ), making up the
pro le of mechanisms solving the principal’s mechanism problem, we can construct an -catalog
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pro le that solves the principal’s problem over catalog pro les.3 Thus, if ( ) solves the
principal’s mechanism problem, the the catalog pro le given byμn

( ) :
o ¶

:=
³

( )
´

solves the principal’s catalog problem. Also note that for each , ( ) can be rewritten in the
following way,

( ) := ( ) := ( 0( ) 1( ) ( )). (9)

Note that if ( 0) D( ( )), then for the 0 component of the + 1-tuple in expression (9),
we have

0( ) = ,

while for all other (i.e., those such that ( ) D( ( ))), ( ) is a nonempty, -closed
subset of

( )× ({ } × { }),
namely, ( ( ) ( ))

4 The Delegated Networking Principle

We now formally state and prove the Delegated Networking Principle for a principal-multi-agent
games of network formation with adverse selection (also see Page, 1992 and 1997, and Page and
Wooders, 2010).

Theorem 2 (The Delegated Networking Principle)
Suppose assumptions [A-1] and [A-2] hold. The following statements are equivalent.
(1) (·) G( G ), is incentive compatible, that is, for all and 0

( ( )) ( ( 0 ))

(2) (·) M( G ) is such that there exists a unique, minimal (by set inclusion) ij-catalog,
G (G ) satisfying

( ) ( G )for all 4

Let (G ) denote the collection of all (everywhere) measurable selections of the best re-

sponse mapping, (· G ), with -catalog G , the delegated networking principle can be stated
compactly as follows:

(·) IC if and only if (·) (G )

for some -catalog G
3Under the mechanism, (·), if player reports his private information truthfully, say , then his intended
-network is given by

( ) := ( ( ) ( )) ( )× ({ } × { }) : ( ) D( ( )) .

4By de nition of , ( ) ( G ) if and only if ( ( )) = max G ( ) for all
.
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Proof of the Delegated Networking Principle:
(1) = (2) Let (·) be an incentive compatible -mechanism and consider the -catalog

( ) .
First, note that for each ,

( ( )) ( ) for all ( ) .

Suppose not. Then for some , there exists ( ) , such that,

( ) ( ( )).

Because ( ) , there exists a sequence { } in such that ( ) . But

now because
( ) ( ( ))

by the -continuity of ( ·) the fact that ( ) implies that for large enough,

( ( )) ( ( )),

contradicting the fact that (·) is incentive compatible. Therefore, because

( ( )) ( ) for all ( )

we conclude that
( ) ( ( ) ) for all

Let G := ( ) . It remains to show G is the minimum -catalog.
Now suppose that there exists another -catalog, G0 , such that

( ) ( G0 ) for all

but that for some ( ) ,
G0

Again, because ( ) , there exists a sequence of player types { } in such that
( ) . But now we have

( ) ( G0 ) for all and ( G0 ) G0 .

Because G0 is -closed and ( ) , we must conclude that G0 , a contradiction.
(2) (1). The proof is straightforward.

5 The Equivalence of Mechanism Games and Catalog Games

Given -catalog, G , the type player is indi erent over the networks in ( G ), the
principal will not be. In order to resolve the principal’s lack of indi erence over ( G ), the
principal will suggest or recommend a particular -network choice from ( G ). Any such
recommendation will be followed by the type player because it is incentive compatible for the
agent to do so provided the player is type and the -catalog o ered is G . The principal’s
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optimal recommendation list is found by solving pointwise (i.e., player type by player type) the
following problem

max( ) × × ( G ) ( ( ) × )

Let
( (G ) × )

= max( ) × × ( G ) ( ( ) × )

By Theorem 2 in Himmelberg, Parthasarathy, and VanVleck (1976), given -catalogs, (G ) × ,
there exists for each player a selection from (· G ), say

(·) (G ),

such that
( ( ( )) × )

= ( (G ) × ).

Moreover, because
(· ·) := × (· ·)

is [B( ) × × B( (G ))]-measurable and -compact-valued in × (G ) and
(· ·) is measurable and -upper semicontinuous on

× (G )

for each ( ) × , it follows from Theorem 2 in Himmelberg, Parthasarathy, and Van Vleck
(1976) that (· ·) is measurable. Moreover, because

(· ·) := × ( ·)
is -upper semicontinuous on × (G ), it follows from Theorem 2 in Berge (1963) that
( ·) is -upper semicontinuous on

× (G )

The catalog game can now be stated very compactly as

max(G ) × × (G )

R
( (G ) × ) ( ) (10)

The mechanism game can also be stated very compactly as

max( (·)) × × IC
R

( ( ( )) × ) ( ) (11)

Also, recall that

(G ) :=
©

(·) : ( ) ( G ) for all
ª

(12)

denotes the set of all measurable selections from (· G ) for a given -catalog G (G )
and de ne

= G (G ) (G ). (13)

An alternative statement of the Delegation Principal is that

IC = . (14)

We now have our main result on the equivalence of mechanism games and catalog games. This
result is an immediate consequence of the Delegated Networking Principle.
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Theorem 3 (The Equivalence of Mechanism Games and the Catalog Games)
Suppose assumptions [A-1] and [A-2] hold. Then the following statements are true.
(1) If ( (·)) × × IC solves the network formation game over mechanisms given
by

max( (·)) × × IC
R

( ( ( )) × ) ( )

then
( ( ) ) × × (G )

solves the network formation game over catalogs × (G ) given by

max(G ) × × (G )

R
( (G ) × ) ( )

(2) If (G ) × × (G ) solves the network formation game over catalogs given by

max(G ) × × (G )

R
( (G ) × ) ( )

then
( (·)) × × (G )

such that
( ( ( ) ) × )

= max( ) × × ( G ) ( ( ) × )

solves the network formation game over mechanisms given by

max( (·)) × × IC
R

( ( ( )) × ) ( )

6 Existence

Because the principal’s optimal payo function ( ·) is upper semicontinuous on × (G )
for all and because × (G ) is an -compact metric space, we easily obtain the fol-
lowing existence result.

Theorem 4 (Existence of an Optimal Catalog)
Suppose assumptions [A-1] and [A-2] hold. Then there exists an ij-catalog pro le,
(G ) × × (G ), solving the catalog game, that is, a catalog pro le, (G ) ×
such that R

( (G ) × ) ( )

= max(G ) × × (G )

R
( (G ) × ) ( )

Suppose that (G ) × × (G ) solves the catalog game (10) and

( (·)) × × (G )

is such that

( ( ( )) × )

= max( ) × × ( G ) ( ( ) × )
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For all (G ) × × (G ) and for all ( (·)) × × (G )R
( (G ) × ) ( ) =

R
( ( ( )) × ) ( )R

( (G ) × ) ( ) =
R

( ( ( )) × ) ( )

where ( (·)) × × (G ) is such that

(( ) × ( ( )) × )

= max( ) × × ( G ) ( ( ) × )

Thus, we can conclude via the Delegated Networking Principle (i.e., via the fact that IC = )

that R
( (G ) × ) ( ) =

R
( ( ( )) × ) ( )

= max( (·)) × × IC
R

( ( ( )) × ) ( )

We have the following Corollary.

Corollary (Existence of an Optimal Network Formation Mechanism)
Suppose assumptions [A-1] and [A-2] hold. Then there exists a network formation mechanism
( (·)) × × IC solving the mechanism game, that is, a mechanism ( (·)) ×
such that R

( ( ( )) × ) ( )

= max( (·)) × × IC
R

( ( ( )) × ) ( )
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