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Upstreamness and downstreamness in input-output

analysis from local and aggregate information

Silvia Bartolucci∗, Fabio Caccioli †, Francesco Caravelli‡, Pierpaolo Vivo§

Abstract

Ranking sectors and countries within global value chains is of paramount importance

to estimate risks and forecast growth in large economies. However, this task is often non-

trivial due to the lack of complete and accurate information on the flows of money and

goods between sectors and countries, which are encoded in Input-Output (I-O) tables. In

this work, we show that an accurate estimation of the role played by sectors and countries

in supply chain networks can be achieved without full knowledge of the I-O tables, but only

relying on local and aggregate information, e.g., the total intermediate demand per sector.

Our method, based on a rank-1 approximation to the I-O table, shows consistently good

performance in reconstructing rankings (i.e., upstreamness and downstreamness measures

for countries and sectors) when tested on empirical data from the World Input-Output

Database. Moreover, we connect the accuracy of our approximate framework with the

spectral properties of the I-O tables, which ordinarily exhibit relatively large spectral gaps.

Our approach provides a fast and analytical tractable framework to rank constituents of

a complex economy without the need of matrix inversions and the knowledge of finer

intersectorial details.

1 Introduction

The introduction of Input-Output (I-O) analysis as a fundamental tool to analyze the inter-

relationship between economic sectors of a country was pioneered by W. Leontief, who proposed

the construction of the first I-O tables for the United States for the years 1919 and 1929 [1, 2].
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An I-O table summarizes how the products (outputs) of a given industry or economic sector

are used as input to other industries or sectors within the same, or different, economies (for

instance, in the case of Import/Export exchanges with other countries) [3]. Understanding

the structure and relevance of industrial sectors and countries within the so-called global value

chains (GVCs), encompassing the different stages of the production process across different

countries, is of central importance [4]. To achieve this, a number of indicators and measures

have been devised that characterize the relative positioning of industries and economic sectors

in the economy. These rely on the calculation of the following technical object,

G(A) = (1N − A)−1 , (1)

the so-called Leontief inverse (or resolvent) matrix. Here, 1N is the N × N identity matrix

(where N is the number of industrial sectors) and A is a sub-stochastic matrix with positive

entries, which is related in a simple fashion to the original I-O table. Notably, the upstream-

ness and downstreamness metrics proposed by Antrás, Chor and collaborators (see Sec. 2 for

mathematical definitions) have become widely used and mainstream in recent years [5–7]. One

of the main practical challenges of the Input-Output analysis lies in the accurate and reliable

compilation of inter-sectorial I-O tables from which the matrix A in formula (1) is derived. This

issue is particularly felt at firm-level, where often only aggregate information is available [8].

The main contribution of our paper is to show that up-/downstreamness measures and

similar resolvent-like metrics can be approximated with high accuracy even when possessing

only aggregate and local information about the inter-sectorial dependencies encoded within the

I-O table. In this case, the required information only amounts the row (or column) sums of

the matrix A, representing the total intermediate demand per industry (or the total value of all

inputs required by each industry).

More specifically, we propose an approach rooted in complexity science that reconstructs the

most likely matrix A derived from I-O tables on the basis of limited/aggregated information,

and uses this surrogate information to compute the Leontief inverse and related indicators

(e.g., upstreamness and downstreamness). These indicators can be derived from the aggregate

information available in a fast – as this procedure does not require to perform a full matrix

inversion– and accurate way. Moreover, in this work we connect the accuracy of our approximate

framework with the spectral properties of the I-O tables.

1.1 Related literature

There is a vast literature concerning input-output models and how inaccuracies and noise in I-O

tables may affect the determination of the relative ranking of industrial sectors and countries

within the economy. One strand focuses on the accuracy of the empirical input-output matrix

denoted by Aemp with respect to the true matrix Atrue. The main question is about how errors

occurring in the compilation of the Input/Output tables propagate and affect measurements and

predictions based on nonlinear functions of Aemp = Atrue +H (for instance, the Leontief Inverse

(1N − Aemp)−1), where H encodes the stochastic sources of error. Compiling the entries of the

matrix Aemp is subject to many issues, for instance the difficulty in sampling and surveying

firms and flows of goods with great accuracy [9, 10]. This has provided the motivation to study
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stochastic models for the input-output analysis.

Evans [11] and Quandt [12] are among the first to look at this problem by constructing

random models. Evans [11] assumed that the error matrix H had only one non-zero row and

that the errors could be propagated on a row-by-row basis. Quandt [12] assumed that the errors

Hij on the matrix elements are independent and normally distributed with mean zero, solved the

error propagation problem for a small-size system (e.g. 2 × 2), and determined the confidence

intervals on the expected Leontief Inverse. Later, Simonovits [13] deduced the fundamental

inequality 〈(1N − Aemp)
−1〉H ≥ (1N − 〈Aemp〉H)−1, where the average is taken with respect

to independent matrix elements of H. This inequality circumvents the problem of inverting

the matrix 1N − Aemp, which has so far been one of the major and long-standing theoretical

challenges.

One of the first comprehensive theoretical studies of stochastic input-output models is due

to West [14]. His starting point is a random matrix H, of which the expected value and the

standard error of all the elements are known, with the aim to provide approximating formulas

for the expected value and the standard errors of the Leontief Inverse in terms of these known

quantities. Some of the assumptions (for instance, that the errors Hij be independent and

normally distributed) are however not realistic or plainly incompatible with the sub-stochasticity

constraint, and only lead to a closed-form solution for the mean and variances of the deviations

from the “true” matrix under very restrictive choices for the variances of the errors in H.

More recently, this approach has been re-evaluated by Kogelschatz [15] - who assumed that

the aij are Beta-distributed and derived estimates for the elements of the Leontief Inverse - and

Kozicka [16] - who postulated more realistic distribution for the matrix entries, but provided

explicit formulae only for small-size systems.

Within the empirical literature, a number of studies have been also undertaken to char-

acterize the regional inter-sectorial dependence of industries and to discuss the challenges of

reconstructing regional data from national accounts and surveys [17].

Given the practical difficulties associated with compiling input-output tables, especially at

the regional level, earlier scholars devised “shortcut” methods to estimate the Leontief inverse

from incomplete or unreliable information, or even foregoing I-O tables altogether. Katz and

Burford [18, 19] derived a formula under the assumption that the matrix A is uniformly drawn

from the set of sub-stochastic matrices, and under the rather questionable technical condition

that the covariance between the entries of the matrix and the output multipliers be null. Their

work hinges on an earlier formula empirically derived by Drake [20]. The general approach based

on finding “shortcuts” and foregoing a painstaking compilation of I-O tables was criticized on

both technical and conceptual grounds [21–24] before this line of investigation was dropped and

even ignored altogether in the subsequent related literature.

The Leontief inverse and the associated indicators have also been looked at through the

prism of complexity and network science. Cerina et al. [25] analyzed the properties of the

(global and regional) network of industries in different economies reconstructing the monetary

goods flows (edges) using the input-output matrix. McNerney et al. [26] used average national

output multipliers to predict future economic growth and price changes. In [27], a model for

the propagation and amplification of idiosyncratic shocks along the input-output network is

provided. In [28], a network analysis of the World Input-Output Data set is undertaken to
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analyze the temporal interdependence between countries and industrial sectors.

In recent years the interest in input-output models has grown steadily [29], also in view of a

rather compelling connection to models of complexity and networks [28, 30]. Moreover, many of

these ideas can in principle be extended to more general sector-product spaces, which saw many

uses for the study of the connection between complexity measures, productivity and economic

growth [31–34].

In the following section, we will focus on the works by Antràs and Chor [4], Fally et al. [6] and

Miller et al. [7], where different incarnations of the so-called upstreamness and downstreamness

measures have been first proposed. An early example of a direct application of those measures

for the analysis of empirical data on global value chains can be found in [35], now used in

multiple contexts [36, 37].

2 Definition of Upstreamness and Downstreamness

Antràs et al. [4] considered a closed economy of N industries. For each industrial sector

i = 1, . . . , N we indicate the value of gross output with Yi and the total intermediate demand

(i.e., the use of the output of an industry as a final good) with Fi. Then the following equality

holds in Input-Output tables:

Yi = Fi + Zi = Fi +
∑N

j=1 aij = (2)

= Fi +
∑N

j=1 dijYj , (3)

with Zi =
∑N

j=1 dijYj corresponding to the output of industry i used as intermediate input

to other industries (intermediate demand) as shown in the scheme in Fig. 1. In [4], {dij}
corresponds to the dollar amount of sector i’s output used to produce one dollar worth of sector

j’s output and it is related to the matrix A via the relationship dijYj = aij. The final demand,

as detailed in Sec. 4, comprises contributions from different factors including, among others,

the final consumption expenditure by households and government, and exports.

Iterating the identity Eq. (2) within Eq. (3), one obtains an infinite sequence of contribu-

tions, each representing the use of sector i’s output at different levels within the value chain

[3]

Yi = Fi +
N∑
j=1

dijFj +
N∑
j=1

N∑
k=1

dikdkjFj + . . . . (4)

We can finally rewrite Eq. (4) as follows

Y = [1N −D]−1F (5)

using
∑

k≥0D
k = [1N −D]−1. In this case, 1N is the N ×N identity matrix, D = (dij) contains

each sector’s output in dollar values and F is the vector of final demands. Antràs et al. [4]

hence proposed the following measure of upstreamness of the i-th industrial sector

U1i = 1 · Fi
Yi

+ 2 ·
∑N

j=1 dijFj

Yi
+ 3 ·

∑N
j,k=1 dikdkjFj

Yi
+ . . . =

([1N −D]−2F )i
Yi

, (6)
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Figure 1: Scheme of the structure of a single-country Input-Output table [3, 38, 39].

where each term contributing to Eq. (4) is weighted by their distance from final use and divided

by the output of the sector Yi. The notation (·)i is used to indicated the i-th component of

the vector. By construction, the terms of the sum that are further upstream in the value chain

carry larger weight in the calculation of the upstreamness. Inserting Eq. (4) in Eq. (6), we can

rewrite the upstreamness as

U1 = [1N − AU ]−11N , (7)

where

AU = Y −1A =


a11
Y1
· · · a1N

Y1
...

. . .
...

aN1

YN
· · · aNN

YN

 (8)

and Y = diag(Y1, . . . , YN). The vector 1N is a column vector of N ones. The matrix AU has

non-negative elements, and in this convention it is row-substochastic, i.e.,
∑

j(AU)ij ≤ 1 ∀j. By

construction U1i ≥ 1 and it is precisely equal to 1 if no output of industry i is used as input to

other industries but it is only used to satisfy the final demand.

Later, Antràs et al. [5] also established an equivalence between their upstreamness measure

and a measure – defined in a recursive fashion – of the “distance” of an industry from the final

demand proposed independently by Fally et al. [6]. Fally’s upstreamness U2 is defined as follows:

U2i = 1 +
N∑
j=1

dijYj
Yi

U2j . (9)

The idea is that U2 aggregates information on the extent to which a sector in a given coun-

try produces goods that are sold directly to final consumers or that are sold to other sectors

that themselves mainly sell to final consumers. Sectors selling a large share of their output to

relatively upstream industries should be therefore considered to be more upstream themselves.
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Using the fact that dijYj = aij we obtain

U2 = [1N − AU ]−11N , (10)

where AU is defined in Eq. (8) as presented in [5].

On the input-side, there exists an analogous accounting identity stating that sector i’s total

input Yi is equal to the value of its primary inputs (the so-called value added) Vi plus its

intermediate input purchased from all other sectors, namely

Yi = Vi + Zi = Vi +
N∑
j=1

aji = Vi +
N∑
j=1

djiYj , (11)

and

Y = [1N −DT ]−1V . (12)

Similarly to Antràs et al. (cf. Eq. (6)), Miller and Temurshoev [7] introduced the so-called

downstreamness, measuring the “average distance between suppliers of primary inputs and sec-

tors as input purchaser along the input demand supply chain” as follows:

D1i = 1 · Vi
Yi

+ 2 ·
∑N

j=1 Vjdji

Yi
+ 3 ·

∑N
j,k=1 Vjdjkdki

Yi
+ . . . =

([1N −DT ]−2V )i
Yi

. (13)

As before, using Eq. (12), we obtain

D1 = [1N − AD]−11N , (14)

with

AD = (AY −1)T =


a11
Y1
· · · aN1

Y1
...

. . .
...

a1N
YN

· · · aNN

YN

 . (15)

The matrix AD has non-negative elements, and it is row-substochastic, i.e.,
∑

j(AD)ij ≤
1 ∀j. Finally, as in the upstreamness case, also for the downstreamness, Fally [6] introduced an

analogous iterative definition of the form

D2i = 1 +
N∑
j=1

djiD2j , (16)

which can be again mapped with simple manipulations onto Eq. (14) using Yidji = aji.
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3 Rank-1 approximation with local and aggregate infor-

mation

In this section, we will discuss how to derive an approximation for the upstreamness and down-

streamness metrics discussed in Sec. 2. Let us consider the resolvent G(A) = (1N − A)−1,

where the matrix A stands for AU or AD as defined in the previous section. Therefore, A has

non-negative entries, and is sub-stochastic. Recall that the vectors of upstreamness and down-

streamness are defined as U1 = G(AU)1N and D1 = G(AD)1N , respectively (cf. Eq. (10),

(14)). We are going now to assume that a detailed and accurate knowledge of all the entries

of A is not available. The only available aggregate information is given by the 2N constants

r = (r1, . . . , rN) and c = (c1, . . . , cN), namely the sums of the N rows and columns of A. This

corresponds to knowing only the total intermediate demand per industry and the total value of

all inputs required by each industry respectively. This lack of detailed information is actually

quite common in supply chain and intrafirm network analysis [8], which in turn leads to the

need for inference and reconstruction methods to fill the gaps.

A simple rank-1 approximation Â for the matrix A is

Â =
1

N
gqT =


g1q1
N

· · · g1qN
N

...
. . .

...
gN q1
N

· · · gN qN
N

 , (17)

where the entries of the column vectors g = (g1, . . . , gN) and q = (q1, . . . , qN) are determined

imposing the constraint that A and Â share the same row and column sums

ri =
∑
j

Aij ≡
∑

k qk
N

gi = q̄ gi , (18)

cj =
∑
i

Aij ≡
∑

k gk
N

qi = ḡ qj . (19)

This yields eventually the unique matrix

Â =
1

mN
rcT (20)

with m = 1
N

∑
ij Aij = 1

N

∑
j cj = 1

N

∑
i ri. The rank-1 matrix Â in (20) is the so-called

Maximum Entropy reconstructed matrix (see e.g. [40, 41]) subject to the row and column

constraints in (18) and (19) (see also [42–46] for related works).

If the only information we have is about row sums, then the corresponding rank-1 approxi-

mation is even simpler

Â =


r1
N
· · · r1

N
...

. . .
...

rN
N
· · · rN

N

 . (21)

Clearly, Â has a single non-zero, real and positive eigenvalue λ1 = 1
mN

∑
j rjcj (or λ1 =
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1
N

∑
j rj in the case of only-row constraints) due to the Perron-Frobenius theorem, and N − 1

zero eigenvalues, therefore we may expect that this approximation will work better the larger

the spectral gap (or equivalently the smaller the spectral radius in the bulk) 1 of the original

matrix A is [47, 48]. The empirical I-O matrices AU , AD typically show a large spectral gap,

suggesting that the rank-1 approximation described in this section should be very effective.

As the empirical I-O matrices AU , AD are rather small (N = 35), it is more informative to

look at their spectral radius. In Sec. 5 we perform a thorough analysis of the spectra of the I-O

matrices at the country level and we study how the accuracy of our rank-1 formula is related

to the spectral radius. We indeed find that there is a clear negative correlation between the

two, i.e. the error made using our approximation increases with Ξ. This said, even in the worst

cases, the relative errors remain fairly negligible and the formulae work very well across the

entire dataset.

Employing this rank-1 approximation, we can now evaluate the approximate resolvent

G(Â) = (1− Â)−1 = 1 +
Â

1− 1
mN

∑
j rjcj

, (22)

using the Sherman-Morrison formula [49] for the inverse of a rank-1 matrix, from which it follows

that the upstreamness and downstreamness of the i-th industry are respectively approximated

by

U1i ≈ 1 +
ri

1− 1
mN

∑
j rjcj

(23)

D1i ≈ 1 +
r̃i

1− 1
m̃N

∑
j r̃j c̃j

, (24)

where ri, ci and r̃i, c̃i represent respectively the sum of rows and columns of AU and AD. If only

the constraint on row is imposed, the formulae above reduce to

U1i ≈ 1 +
ri

1− 1
N

∑
j rj

(25)

D1i ≈ 1 +
r̃i

1− 1
N

∑
j r̃j

. (26)

The approximate formulae above show that, within our rank-1 approximation, the upstream-

ness (downstreamness) of sector i is fully determined by the interplay of (i) local and aggregate

information, namely of the total intermediate demand per sector (and/or the total value of all

inputs required by a each sector), and (ii) a suitable average of the total intermediate demand

(and/or the total value of all inputs) across all sectors in the economy.

In spite of the seemingly drastic approximation, which neglects a significant amount of

finer intersectorial details, we will show that the aggregate information featuring in our rank-1

formulae is sufficient to determine with high accuracy the relative positioning of countries and

1The spectral gap is defined as Γ = λ1−Ξ, with λ1 real and < 1 being the Perron-Frobenius eigenvalue. The
spectral radius is Ξ = max{|λ2|, . . . , |λN−1|}.
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sectors within the global value chains.

In the next sections, we will then calculate upstreamness and downstreamness measures

on I-O tables from the NIOT Dataset (see Sec. 4), comparing the results obtained via our

approximation with the full calculation using the original formulae, namely Eq. (10) and (14).

4 Dataset

Australia (AUS) France (FRA) Netherland (NLD)
Austria (AUT) Great Britain (GBR) Poland (POL)
Belgium (BEL) Greece (GRC) Portugal (PRT)
Bulgaria (BGR) Hungary (HUN) Romania (ROU)

Brazil (BRA) Indonesia (IDN) Russia (RUS)
Canada (CAN) India (IND) Slovakia (SVK)
China (CHN) Ireland (IRE) Slovenia (SVN)
Cyprus (CYP) Italy (ITA) Sweden (SWE)

Czech Republic (CZE) Japan (JPN) Turkey (TUR)
Germany (DEU) Korea (KOR) Taiwan (TWN)
Denmark (DNK) Lituania (LTU) United States (USA)

Spain (ESP) Latvia (LVA) Luxembourg (LUX)?

Estonia (EST) Mexico (MEX)
Finland (FIN) Malta (MLT)

Table 1: Countries and their codes in the NIOT database by WIOD [39]. Luxembourg is not
included in our analysis as data present inconsistencies across the years.

The empirical I-O matrices used for the experiments have been constructed using the 2013

release of the National Input-Output tables by the World Input-Output Database (WIOD) [39].

The NIOT dataset comprises 39 countries –representing a large fraction of the major world

economies – over the years 1995 - 2011. The list of countries and their codes considered in

our empirical analysis is presented in Tab. 1. The structure of the input-output table of each

country is schematically shown in Fig. 1. The intermediate demand for each country is reported

for N = 35 economic sectors in terms of the flow (in US million dollars) between sectors. The

full list of economic sectors and their codes included in our analysis is summarized in Tab. 2.

The final demand is characterized in terms of (i) final consumption expenditure by households,

(ii) final consumption expenditure by non-profit organizations serving households (NPISH), (iii)

final consumption expenditure by government, (iv) gross fixed capital formation, (v) changes in

inventories and valuables and (vi) exports. In the dataset sometimes the change in Inventories

and Valuables can be negative, and were assumed to contribute to imports. The entries aij of

each row of the full I-O table are then normalized by the vector outputs Yj. The normalized

intermediate demand sub-matrix is sub-stochastic and represents the matrix AU . The ri used

in the model are simply the sums over the rows of the matrix AU (or equivalently if normalized

by columns the matrix AD, respectively in Eq. (8) and (15)) .
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Agriculture, Hunting, Forestry and Fishing AGR

Mining and Quarrying MIN

Food, Beverages and Tobacco FOD

Textiles and Textile Products TXT

Leather, Leather and Footwear LEA

Wood and Products of Wood and Cork WOO

Pulp, Paper, Paper , Printing and Publishing PRT

Coke, Refined Petroleum and Nuclear Fuel COK

Chemicals and Chemical Products CHM

Rubber and Plastics RUB

Other Non-Metallic Mineral NMM

Basic Metals and Fabricated Metal MET

Machinery, Nec MAC

Electrical and Optical Equipment ELO

Transport Equipment TRA

Manufacturing, Nec; Recycling MAN

Electricity, Gas and Water Supply ELE

Construction CON

Sale, Maintenance and Repair of Motor Vehicles and Motorcycles; Retail Sale of Fuel MOT

Wholesale Trade and Commission Trade, Except of Motor Vehicles and Motorcycles WHO

Retail Trade, Except of Motor Vehicles and Motorcycles; Repair of Household Goods RET

Hotels and Restaurants HOT

Inland Transport ITR

Water Transport WAT

Air Transport AIR

Other Supporting and Auxiliary Transport Activities; Activities of Travel Agencies OTR

Post and Telecommunications POS

Financial Intermediation FIN

Real Estate Activities EST

Renting of MEq and Other Business Activities REN

Public Admin and Defence; Compulsory Social Security PUB

Education EDU

Health and Social Work HEA

Other Community, Social and Personal Services SOC

Private Households with Employed Persons HOU

Table 2: Sectors of the NIOT dataset by WIOD (2013 release) and their sector codes [39].

5 Results

In this section, we compare our approximate formulae for downstreamness and upstreamness

with single (Eq. (25) and (26) respectively) and double contraints (Eq. (23) and (24) respec-

tively) with the measures obtained via direct inversion of the empirical I-0 matrix (Eq. (10) and

(14) respectively).
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Figure 2: Empirical upstreamness versus approximated upstreamness. Cyan squares represent

the upstreamness per country (39 countries) per year (11 year) averaged over 35 industrial

sectors from the WIOD dataset (Release 2013). Red full circles represents the upstreamness for

all industry sectors in all countries/all years. Top panel: Empirical upstreamness compared with

single-constraint approximation in Eq. (25). Bottom panel: Empirical upstreamness compared

with double-constraints approximation in Eq. (23).
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Figure 3: Empirical downstreamness versus approximated downstreamness. Light green squares

represent the downstreamness per country (39 countries) per year (11 year) averaged over 35

industrial sectors from the WIOD dataset (Release 2013). Blue full circles represent the down-

streamness of all industry sectors in all countries/all years. Top panel: Empirical upstreamness

compared with single-constraint approximation in Eq. (26). Bottom panel: Empirical upstream-

ness compared with double-constraints approximation in Eq. (24).

In Fig. 2 we plot the empirical average over all sectors (cyan squares) of the upstreamness

12



for 39 countries (listed in Table 1) for all years (1995-2011) versus the approximate value with

single (top panel) and double constraints (bottom panel), respectively obtained in Eq. (25) and

Eq. (23). We see that the empirical data (663 data points - 39 countries × 17 years) nicely

collapse on top of the theoretical benchmark (blue dashed line). In the single constraint case,

this implies that the average upstreamness coefficient for a country is determined with high

accuracy by the knowledge of a single quantity z̄ = 1− 1
N

∑
j rj, corresponding to one minus the

average total intermediate demand. We also show the upstreamness values for each sector in

each country across the entire period (red full circles) constituting in total ∼ 23k data points -

35 sectors × 39 countries × 17 years. At the sector level, we observe a similar good agreement of

the empirical exact upstreamness with the approximate values. There are occasional deviation,

whose origin can be traced back to a higher degree of heterogeneity in the A matrix with respect

to the “flat” rank-1 model introduced in Eq. (21). In the following we will also analyze more

closely the relation between the error – discrepancy between the actual values of upstreamness

(and downstreamness) calculated via direct inversion and those obtained via our approximate

formula – and the spectral properties of the empirical I-O matrix A.

In Fig. 3, we repeat a similar analysis for the downstreamness, comparing the values obtained

via direct inversion (Eq. (14)) with the approximate values of downstreamness imposing the

single or double constraint on the knowledge of row sums, or row and column sums, respectively.

Also for this measure, we observe a good agreement between exact and approximate values, both

at the sectors (red full circles) and at the aggregate country level (cyan squares). In the following,

Figure 4: Error σ on approximated vs. exact upstreamness calculated for 39 countries, for the
years 1995− 2011 year averaged over the sectors as a function of the spectral radius Ξ.

we analyze more closely the error made in the estimation of the upstreamness/downstreamness

coefficients via our approximate formulae and link it to spectral properties of the underlying I-O
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matrix A. In particular, we define the following metric for assessing the error [47]

σ =

〈∣∣∣∣∣ R
(emp)
i

R
(approx)
i

− 1

∣∣∣∣∣
〉

, (27)

where Ri represents either the upstreamness or the downstreamness values computed via direct

inversion (R
(emp)
i ) and via our approximate formula (R

(approx)
i ) respectively. The average 〈· · · 〉 is

calculated over all sectors of a given country. Concerning the spectral properties, as shown in [47,

48] the accuracy of the approximation is related to the spectral gap of the matrix A. The matrix

A has non-negative entries, therefore it has one real eigenvalue of largest magnitude λ1 (the

Perron-Frobenius eigenvalue), and its spectral gap is defined as Γ = λ1−max{|λ2|, . . . , |λN−1|}.
As the empirical I-O matrices are rather small (N = 35) it is more informative to look at the

spectral radius. We then introduce the spectral radius excluding the Perron-Frobenius λ1 as

Ξ = max{|λ2|, . . . , |λN−1|} . (28)

This definition is consistent with the approach used in the case of Gaussian matrices perturbed

with a rank-1 matrix that may force an outlier to split off from the circular bulk [48, 50]. In

Fig. 4, we display the error σ made on the approximation for all countries in all years as a

function of the spectral radius Ξ of the AU matrix characterizing each country in each year.

As expected, the error grows with the spectral radius, as the rank-1 approximation becomes

less accurate in reproducing the underlying intersectorial interactions. In Fig. 5, we show the

same relationship labelling the countries for a single year (2011). In the bottom panel, we

show the eigenvalue spectrum of two selected countries – namely China and Mexico – displaying

respectively among the maximal and minimal errors in the estimation, to highlight spectral

differences in the displacement of eigenvalues in the bulk. In this analysis, we find a clear

negative correlation between the accuracy of the estimation and the spectral radius, i.e. the

error made using our approximation increases (equivalently the accuracy of the approximation

decreases) with Ξ. In general though, even in the worst cases, the relative errors remain fairly

small (∼ 5− 6%) and the approximation works very well across the entire sample.
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Figure 5: Top panel: Error σ approximated vs. exact upstreamness averaged over the sectors as

a function of the spectral radius Ξ of the matrix AU for all 39 countries in 2011. Bottom panel:

Eigenvalue spectrum of the AU matrix of China (CHN) and Mexico (MEX) in 2011.

6 Upstreamness under aggregation

In this section, we briefly consider how our approximation performs after the Input-Output data

matrix has been subject to aggregation (consolidation) of different industrial sectors. The effects

of aggregation – i.e. the procedure by which the data are looked at and lumped together at

different “granularity” level – have been considered in many works (see [51] for a comprehensive
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review). Here we consider the axiomatic formulation of aggregation provided in [52], which is

summarized below. Furthermore, our treatment will be confined to the upstreamness, and the

row-only rank-1 approximation, as generalizations to the other cases are straightforward.

Consider the definition of upstreamness given in Eq. (7)

U1 = [1N − AU ]−11N . (29)

To make contact with Ref. [52], we rewrite (29) as

[U1
T ]N = 1TN [1N − ATU ]−1 , (30)

in terms of row vectors U1
T and 1TN , and a column-substochastic N × N matrix ATU . The

notation [. . .]N indicates that the vector has length N .

Let us assume that we wish to aggregate the N “micro” industrial sectors or commodities

into a set of M < N “macro” sectors or commodities. Formally, we can define two matrices,

S and T , of size M × N and N ×M respectively. The {0, 1} matrix S indicates which micro-

sectors should be combined together: Sij = 1 if micro-sector j is to be included in macro-sector

i. Thus, S is a column stochastic matrix with exactly one 1 in every column, and at least one

1 in every row. The matrix T indicates the proportional weights of each micro-sector within its

macro-aggregate. The element Tji ∈ (0, 1) represents the weight wji that micro-sector j carries

within macro-sector i, and therefore is such that
∑

j Tji = 1. It follows that T is also column

stochastic.

Forming the aggregate M ×M matrix A′U = SATUT is the most common way used in the

literature to create a smaller sub-stochastic matrix from the original matrix AU , which retains

(at a coarser level of detail) some of the information about industrial sectors and commodities

provided by AU . Although other choices of aggregation are possible, it was proven in [52] that

the aggregator A′U is the only one that satisfies three natural axioms of linearity, value added

neutrality, and partitioning, therefore in the following we will confine ourselves to this case (the

so called standard aggregator). It follows from the definition of S and T that ST = 1M and TS

is a column stochastic, idempotent matrix of rank M (see [52] for a proof).

Although in principle any non-negative column-stochastic matrix could play the role of T ,

in practice it makes most sense to define it as

T = diag(w)ST [diag(Sw)]−1 , (31)

where w is a vector of N non-negative numbers, and diag(w) is the diagonal matrix having

the vector entries on the diagonal (in their natural order). According to Charnes and Cooper,

“The main justification for this mode of consolidation is that it conforms to the way data would

be synthesized ab initio if SAT rather than A were the objective” [53]. To better understand

how standard aggregation works, consider as an example a 6× 6 matrix ATU (whose elements we

denote αij for simplicity, so αij = aji/Yj). Let

S =

0 0 1 1 0 0

1 1 0 0 0 0

0 0 0 0 1 1

 , (32)

16



and w = (w1, w2, w3, w4, w5, w6). Then

T = diag(w)ST [diag(Sw)]−1 =



0 w1

w1+w2
0

0 w2

w1+w2
0

w3

w3+w4
0 0

w4

w3+w4
0 0

0 0 w5

w5+w6

0 0 w6

w5+w6


, (33)

and the aggregator becomes

A′U = SATUT =


w3(α33+α43)+w4(α34+α44)

w3+w4

w1(α31+α41)+w2(α32+α42)
w1+w2

w5(α35+α45)+w6(α36+α46)
w5+w6

w3(α13+α23)+w4(α14+α24)
w3+w4

w1(α11+α21)+w2(α12+α22)
w1+w2

w5(α15+α25)+w6(α16+α26)
w5+w6

w3(α53+α63)+w4(α54+α64)
w3+w4

w1(α51+α61)+w2(α52+α62)
w1+w2

w5(α55+α65)+w6(α56+α66)
w5+w6

 .

(34)

Now, let us assume that the vector of N upstreamness values in (30) can be faithfully

approximated by our formula (25), which can be written as

[Û1

T
]N = 1TN +

1

1− r̄N
rT , (35)

where r is the (column) vector of row sums of the matrix AU (or the column sums of ATU ,

rj =
∑N

i=1 αij), and r̄N is their average. Let us further assume that the original data matrix

AU is not known in its entirety (only its row sums are known), but the sectors/commodities in

AU have been aggregated using a known pair of matrices S, T – in other words, we are aware

of what sectors/commodities have been lumped together (and with which relative weights) and

what their aggregate outputs are, but we do not have more detailed information. We ask whether

the knowledge of r, S and T is sufficient to determine [Û1

T
]M , namely a faithful approximation

for the M upstreamness values of the aggregate model. The answer is affirmative.

First, define

[U1
T ]M = 1TM [1M − A′U ]−1 = 1TM [1M − SATUT ]−1 , (36)

the vector of M upstreamness values, obtained using the aggregate matrix A′U as a source. The

Leontief matrix on the r.h.s. of (36) is equal to the aggregate of the Leontief matrix of the so

called companion matrix ĀU = ATUTS [52], namely2

[1M − SATUT ]−1 = S[1N − ĀU ]−1T . (37)

Imagine now that the true matrix ATU appearing on the l.h.s. of (37) is replaced by its best

rank-1 approximation, given by ÂT (see Eq. (21)). It is easy to deduce3 that in this case the

2The proof follows by expanding [1M − SAT
UT ]−1 = 1M + SAT

UT + (SAT
UT )2 + . . ., and using (SAT

UT )n =
S(AT

UTS)nT and TST = T .
3This follows from the fact that the rank of the product of two matrices (Â and TS) is smaller or equal than

the smallest rank of the two factors, and that TS is rank-M (and of course none of the matrices involved is a
null matrix).
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companion matrix will also be rank-1. Applying Sherman-Morrison on the r.h.s. of (37), we get

S[1N − ÂTS]−1T = 1M +
1

1− φ(r, S, T )
S(ÂTS)T = 1M +

1

1− φ(r, S, T )
SÂT , (38)

where we used S1NT = ST = 1M , and

φ(r, S, T ) =
1

N

N∑
i,k=1

ri(TS)ik . (39)

Eq. (38) shows how to construct a faithful rank-1 approximation for the upstreamness of the

aggregate model starting from the knowledge of row sums of the original model, as well as of

the matrices T and S implementing the aggregation.

7 Summary and Outlook

In this paper, we have shown that the upstreamness and downstreamness measures introduced

in the context of Input-Output analysis at both the inter-sectorial and country level can be

faithfully recovered from the knowledge of aggregate and local information about the I-O table.

In other words, the precise determination of the elements of the input-output matrix does not

matter much, as long as their distribution does not deviate significantly from the “homogeneous”

(flat) model (described in Eq. (21)), and the total intermediate demand per sector is ordinarily

sufficient to provide an accurate estimate of the sector’s multipliers.

Our rank-1 approximation has been successfully tested on National Input-Output tables ob-

tained from WIOD, where an excellent correlation is obtained between the empirical multipliers

and the theoretical formulae (see Fig. 2 and Fig. 3). Small deviations from this remarkably

robust regularity are readily attributed to stronger heterogeneity in the empirical sectorial data,

which would require refinements to the (single or doubly constrained) rank-1 approximation

presented here.

Indeed, sparser or more heterogeneous I-O matrices tend to have a larger spectral radius

(or equivalently a smaller spectral gap), as demonstrated in Fig. 4 and Fig. 5. The quality

of our rank-1 approximation is very high across the sectors and countries considered, but may

be inferior for emprical matrices larger spectral radii – as more eigenvalues besides the largest

(Perron-Frobenius) start to play an important role.

In Section 6, we have also shown how our rank-1 approximation is well-behaved with re-

spect to aggregation of sectorial data: knowing what sectors/commodities are lumped together,

and what their aggregate outputs are, is sufficient to determine a faithful approximation for

the upstreamness values of the aggregate model, as the rank-1 nature of the approximation is

preserved upon aggregation.

In a recent paper [54], we further employ the rank-1 approximation as a proxy to investigate

the “puzzling” correlations observed between upstreamness and downstreamness at aggregate

level [35]. More generally, our approach based on a rank-1 approximation demonstrates that local

and aggregate information about I-O tables is ordinarily sufficient to determine the upstreamness

and downstreamness at sectorial and country level with high accuracy, while at the same time
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providing analytically tractable formulae (Eq. (14), (7)) that avoid matrix inversions altogether.

As an outlook for future research, it will be interesting to test the accuracy of our formulae

on firm-level data, where data availability and sparsity are greater concerns. In spite of the

sparser nature of the data, we would expect our approximation to work well, as recently shown

on experiments conducted on synthetic data [47].
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